ТЕРМОТЕХНИК ТТ50

210-2000 кВт; 115 °С; 6 бар

Назначение котлов ТТ50

Котлы серии ТЕРМОТЕХНИК тип ТТ50— это двухходовые водогрейные газотрубные котлы мощностью от 0,21 до 2,0 МВт. Котлы ТТ50 изготавливаются в соответствии с требованиями Технических регламентов Таможенного союза:

- «О безопасности машин и оборудования»;
- «О безопасности оборудования, работающего под избыточным давлением»;
- «О безопасности аппаратов, работающих на газообразном топливе».

Котлы TEPMOTEXHИК тип TT50 предназначены для теплоснабжения зданий и сооружений и обеспечения технологических процессов различного назначения.

Область применения: стационарные, блочномодульные и транспортабельные котельные, используемые в закрытых и открытых системах теплоснабжения.

Котлы могут перевозиться железнодорожным, автомобильным и водным транспортом в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта. Поставка котлов осуществляется в собранном виде одним транспортабельным блоком.

Гарантийный срок при соблюдении условий транспортирования, хранения, монтажа и эксплуатации — 36 месяцев со дня ввода в эксплуатацию, но не более 42 месяцев со дня отгрузки с завода-изготовителя.

Оптимальный выбор для надежной эксплуатации:

- широкий диапазон для малых энергетических задач. Тепловая мощность котлов от 210 до 2000 кВт;
- широкий выбор возможных комплектаций.
 В полной и частичной комплектациях котлы оснащаются системами автоматического управления и контроля ЭНТРОМАТИК серии 100MS или 110MS, всеми необходимыми датчиками и приборами безопасности, что делает эксплуатацию котла надежной и безопасной;
- универсальность конструкции фронтальной двери. Уникальная конструкция петлевых узлов позволяет не только выбрать направление открытия (влево/вправо), но и перевернуть дверь в оси котла на 180°, тем самым изменив положение смотрового глазка, что актуально

Общий вид котла ТТ50

для некоторых типов горелок, имеющих громоздкий корпус;

- крепление горелки с помощью горелочной плиты или фланца-удлинителя. Данное решение позволяет установить горелочное устройство любого производителя. Длинная и короткая горелочные головы больше не проблема;
- полное открытие фронтальной двери вместе с горелочным устройством. Регламентное обслуживание и осуществление чистки теплообменных поверхностей не требуют демонтажа горелки. Передняя трубная доска, внутренняя поверхность жаровой трубы и дымогарные трубы полностью доступны для осмотра и чистки;
- прочное основание. Конструкция основания выполнена из стальных швеллеров. Котел не требует проектирования и изготовления специального фундамента. Весовая нагрузка от котла, заполненного теплоносителем, равномерно распределена по опорной площади. Котел не требует дополнительной фиксации к закладным основания при установке в стационарных котельных залах;
- совместимость с различными типами горелочных устройств. Корректная работа с автоматическими многоступенчатыми и модулируемыми горелками;
- незамерзающий теплоноситель. Возможно применение в качестве теплоносителя растворов этиленгликоля, что сводит к минимуму вероятность замерзания котлового контура;
- двухкотловое исполнение. Один котел устанавливается на другой вторым ярусом.
 Актуально при дефиците площади помещения котельной.

Высокая эффективность при минимальных эксплуатационных затратах:

- максимальные значения эксплуатационного КПД среди котлов данного класса. Высокая эффективность достигается следующими способами:
 - 1. Интенсивный конвективный теплообмен. В дымогарных трубах второго хода установлены турбулизаторы потока дымовых газов. Турбулизаторы изготовлены из жаропрочной высоколегированной стали и имеют длительный срок службы.
 - 2. Интенсивный лучистый теплообмен. Гладкостенная цилиндрическая жаровая труба полностью омывается теплоносителем, что позволяет максимально воспринимать излучение факела и передавать воспринятое тепло теплоносителю.
 - 3. Максимальная площадь эффективных теплообменных поверхностей в скромных габаритах. В котлах мощностью от 420 кВт реализована двухрядная схема расположения дымогарных труб, что количественно увеличивает эффективные теплообменные поверхности.
 - 4. Качественная теплоизоляция. Для тепловой изоляции корпуса котла применены минеральные маты с низкими значениями коэффициентов теплопроводности, что сводит к минимуму потери энергии в окружающую среду через обшивку котла;
- котлоагрегат. Полная комплектация котла, включая горелочное устройство, модуль автоматики, электрические шкафы, все необходимые датчики и приборы безопасности, трубопроводную обвязку, насосный модуль.

Данное решение позволяет получить полностью готовый к эксплуатации котел без дополнительных затрат на обвязку и монтаж, что является экономически целесообразным и гарантирует правильный подбор составляющих компонентов.

Технологичность и качество — в деталях:

- высококачественный листовой и трубный прокат. Для изготовления котлов ТЕРМОТЕХНИК применяются листы и трубы, произведенные ведущими российскими металлургическими комбинатами. Все материалы проходят входной контроль на предмет соответствия физических свойств и химического состава заявленным маркам сталей, выбранным исходя из расчетов прочности для каждого типоразмера котла;
- многоуровневый контроль качества на всех этапах производства. Аттестованная лаборатория производит неразрушающий и визуально-измерительный контроль в соответствии с требованиями карты контроля каждого изделия;
- обязательные гидравлические испытания.
 Каждое изделие подвергается гидравлическим испытаниям на завершающей стадии изготовления;
- максимальная автоматизация процесса изготовления. При изготовлении применяется автоматическая сварка. Рабочие центры оборудованы всем необходимым инвентарем и оснасткой, что положительно влияет на высокоточную собираемость узлов и качественную подготовку кромок свариваемых деталей.

Работа котлов ТТ50

Котел ТЕРМОТЕХНИК тип ТТ50 является газотрубным двухходовым котлом. Принципиальная схема работы котла ТТ50 представлена на рисунке.

Сгорание топлива происходит в камере сгорания, образованной Жаровой трубой 1 и Плоским анкерным днищем 2. Дымовые газы реверсируют вдоль стенок Жаровой трубы 1, возвращаясь в область Переднего фронта котла 6. Разворачиваются в Поворотной камере 5, образованной Передним фронтом 6 и Футеровкой фронтальной дверцы 7.

Далее по Дымогарным трубам второго хода 3 транспортируются в область Заднего фронта 21, при этом отдавая часть своей энергии теплоносителю, циркулирующему в объеме котла, ограниченном Жаровой трубой 1, Анкерным днищем 2, Дымогарными трубами второго хода 3, Передним фронтом 6, Задним фронтом 21 и Обечайкой наружного кожуха котла 20. После выхода из Дымогарных труб второго хода 3 отдавшие свою энергию газы поступают в Дымовую коробку 10 и через Патрубок отвода уходящих газов 18 покидают пределы котла.

При сгорании топлива в камере сгорания, помимо конвективного теплообмена между реверсирующими газами, также эффективно работает излучение, передающее тепло факела стенкам Жаровой трубы 1 и далее теплоносителю, циркулирующему в объеме котла. Для усиления конвективного теплообмена в Дымогарных трубах второго хода 3 установлены Термостойкие интенсификаторы 4, выполненные из качественной нержавеющей стали.

Визуальный осмотр факела, развернутого в Жаровой трубе 1, осуществляется через Смотровой глазок 17, расположенный на передней стенке Фронтальной дверцы котла 8.

Фронтальная дверца котла 8 может полностью открываться с установленным на ней Горелочным устройством 9 в любом направлении. Изначальное направление открытия необходимо указать при заказе котла. Впоследствии направление открытия может быть изменено самостоятельно. При открытой фронтальной дверце обеспечивается доступ для осмотра и чистки внутренних теплообменных поверхностей котла по газовой стороне, таких как Дымогарные трубы второго хода 3, Жаровая труба 1, Передний фронт 6, а также осмотра и замены (при необходимости) Термостойких интенсификаторов 4.

Для очистки Дымогарных труб второго хода 3 должен использоваться специальный комплект для чистки. Отложения продуктов сгорания выталкиваются в Дымовую коробку 10, откуда удаляются через Смотровой люк дымовой коробки 11. Патрубки входа теплоносителя 12, выхода теплоносителя 13 и Патрубок аварийной линии 14 располагаются сверху котла. На патрубках входа и выхода теплоносителя имеются специальные штуцеры для установки датчиков температуры.

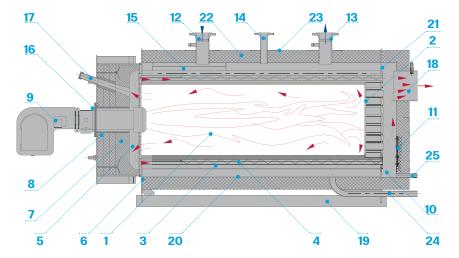
На Обечайке наружного кожуха котла (20), с водяной стороны, в области расположения Патрубка входа теплоносителя (12), располагается Водонаправляющий элемент (15).

Данный элемент позволяет эффективно организовать движение теплоносителя в объеме котла.

Для монтажа Горелочного устройства 9 на Фронтальной дверце котла 8 используется переходной элемент — Горелочная плита 16 или, при необходимости, фланец-удлинитель. Горелочная плита (фланец-удлинитель) заказывается отдельно и разрабатывается непосредственно под конкретное Горелочное устройство. По умолчанию котлы оснащаются глухой горелочной плитой.

Для равномерного распределения весовой нагрузки котла, заполненного теплоносителем, в конструкции применяются Стальные несущие опоры 19. Котел на данных опорах может быть размещен на ровном, прочном полу без устройства дополнительного фундамента. Фиксация опор к закладным пола не требуется, за исключением случаев установки котла в модульных котельных, подлежащих транспортировке в собранном виде.

Для Теплоизоляции котла (22) применяются ламельные минеральные маты с низким значением коэффициента теплопроводности, что позволяет значительно уменьшить коэффициент q_5 (потери тепла в окружающую среду через обшивку котла) ниже нормативного значения $(0,5\,\%\,Q)$.


Снаружи котел облицован Оцинкованным покрытием 23, что позволяет сохранить эффектный внешний вид на протяжении всего срока службы.

Дренажный патрубок котла 24 расположен в нижней его части и служит для полного или частичного удаления теплоносителя из внутренней полости. Дренажный патрубок дымовой коробки 25 расположен в нижней ее части и служит для удаления конденсата, образовавшегося в котле при пусках из холодного состояния.

В верхней части фронтов (переднего/заднего) имеются специальные отверстия, являющиеся местами строповки при перемещении котлов, их погрузке и выгрузке.

Схема котла ТТ50

- 1 Жаровая труба
- 2 Плоское анкерное днище
- З Дымогарные трубы второго хода
- 4 Термостойкие интенсификаторы
- 5 Поворотная камера
- Передний фронт (трубная доска)
- Футеровка фронтальной дверцы котла

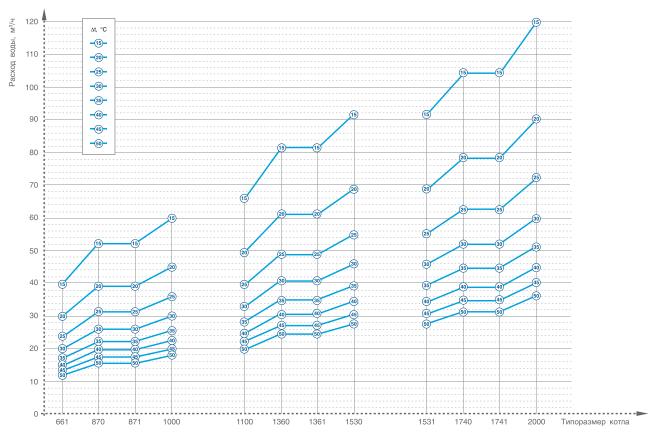
- 8 Фронтальная дверца котла
- 9 Горелочное устройство
- 10 Дымовая коробка
- 111 Смотровой люк дымовой коробки
- 12 Патрубок входа теплоносителя
- 13 Патрубок выхода теплоносителя

- 14 Патрубок аварийной линии
- 15 Водонаправляющий элемент
- 16 Горелочная плита
- 17 Смотровой глазок
- 18 Патрубок отвода уходящих газов
- 19 Стальные несущие опоры
- Обечайка наружного кожуха котла
- 21 Задний фронт (трубная доска)
- 22 Теплоизоляция котла
- 23 Облицовочное оцинкованное покрытие
- 24 Дренажный патрубок котла
- 25 Дренажный патрубок дымовой коробки

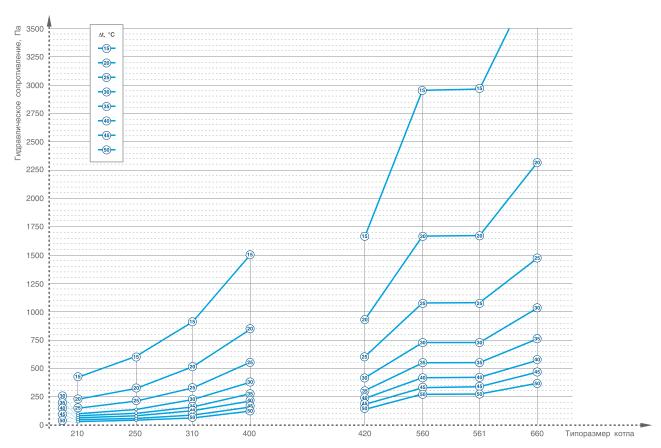
Технические характеристики котлов ТТ50

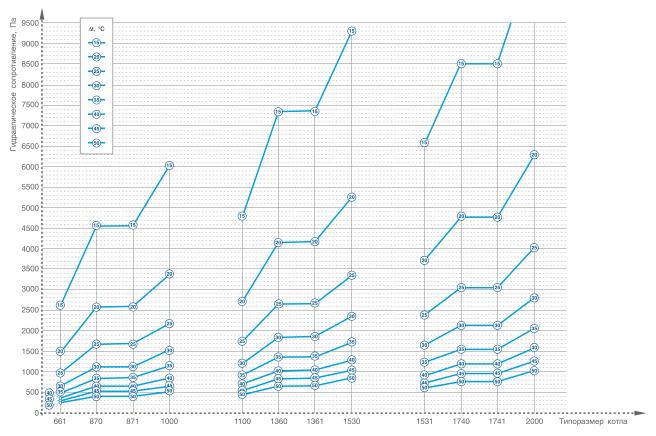
Наименование параметра	Значение
Максимальная температура на выходе из котла, °С	115
Минимальная температура на входе в котел, °C	60
Максимальное рабочее избыточное давление, МПа	0,6
Минимальный расход воды, м³/ч	Не регламентируется
Минимальная мощность первой ступени горелки, %	50
Назначенный срок службы, лет, не менее	25
Назначенный ресурс, ч, не менее	200000

Типоразмер котла	250		400		560		660		870	
Номинальная теплопроизводительность, кВт	210	250	310	400	420	560	561	660	661	870
Номинальный расход воды в зависимости от Δt , $M^3/4$	см. график									
Гидравлическое сопротивление водяного тракта при расходе теплоносителя в зависимости от Δt, Па	см. график									
Эксплуатационный КПД, %	не менее 94									
КПД на максимальной нагрузке, %	95,2	94,5	93,4	91,7	94,3	92,9	92,9	91,8	94,6	93,3
Температура уходящих газов, °С	127	142	165	199	144	174	175	196	139	166
Расход уходящих газов, кг/с	0,09	0,11	0,13	0,17	0,18	0,24	0,24	0,29	0,28	0,37
Аэродинамическое сопротивление газового тракта для максимальной мощности, Па	142	205	328	576	195	361	363	520	275	494
Объем топки, м ³	0,35	0,35	0,35	0,35	0,52	0,52	0,52	0,52	0,80	0,80
Водяной объем котла, м ³	0,35	0,35	0,35	0,35	0,74	0,74	0,74	0,74	0,96	0,96
Масса сухого котла (допуск на массу 4,5 %), кг	1108	1108	1133	1133	1525	1525	1571	1571	1954	1954

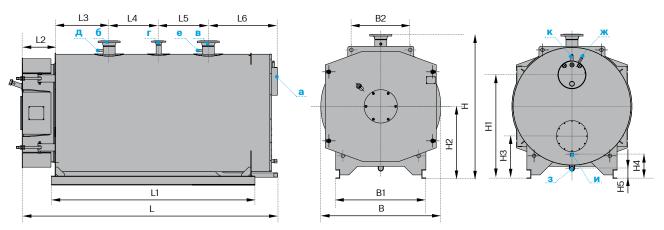

Типоразмер котла	10	1000		1360		30	1740		2000			
Номинальная теплопроизводительность, кВт	871	1000	1100	1360	1361	1530	1531	1740	1741	2000		
Номинальный расход воды в зависимости от Δt , м³/ч	см. график											
Гидравлическое сопротивление водяного тракта при расходе теплоносителя в зависимости от Δt, Па	см. график											
Эксплуатационный КПД, %	не менее 94											
КПД на максимальной нагрузке, %	93,3	92,4	94,2	93,1	93,1	92,4	94,2	93,6	93,6	92,8		
Температура уходящих газов, °С	166	184	147	170	170	185	147	160	160	176		
Расход уходящих газов, кг/с	0,37	0,43	0,47	0,59	0,59	0,66	0,65	0,75	0,75	0,86		
Аэродинамическое сопротивление газового тракта для максимальной мощности, Па	495	671	429	676	677	876	492	647	648	876		
Объем топки, м ³	0,80	0,80	1,34	1,34	1,34	1,34	1,86	1,86	1,86	1,86		
Водяной объем котла, м ³	0,96	0,96	1,29	1,29	1,29	1,29	1,70	1,70	1,70	1,70		
Масса сухого котла (допуск на массу 4,5 %), кг	2021	2021	2792	2792	2895	2895	3511	3511	3656	3656		

Значения указаны для температурного графика 60-75 °C

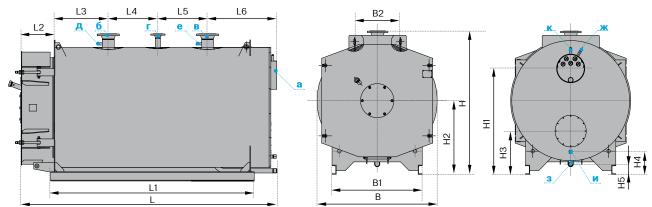



Зависимость расхода воды котлов TT50 от Δt

Зависимость расхода воды котлов TT50 от Δt . Продолжение



Зависимость гидравлического сопротивления котлов TT50 от Δt



Зависимость гидравлического сопротивления котлов TT50 от Δt . Продолжение

Габаритные и присоединительные размеры котлов ТТ50

Габаритные и присоединительные размеры котлов теплопроизводительностью 210–1000 кВт

Габаритные и присоединительные размеры котлов теплопроизводительностью 1100-2000 кВт

Типоразмер котла		250	400	560	660	870	1000	1360	1530	1740	2000		
Диапазон мощностей, кВт		210-250	310-400	420-560	561-660	661–870	871-1000	1100-1360	1361-1530	1531-1740	1741–2000		
Выход дымовых газов, Ду, мм	а	211	211	250	250	300	300	350	350	350	350		
Вход воды, Ду, мм	б	100	100	100	100	125	125	125	125	150	150		
Выход воды, Ду, мм	В	100	100	100	100	125	125	125	125	150	150		
Предохранительный клапан, Ду, мм	г	40	40	50	50	50	50	65	65	80	80		
Датчик температуры воды на входе, Ду, мм	Д		G ⅓ – B										
Датчик температуры воды на выходе, Ду, мм	е		G ½ − B										
Датчик температуры уходящих газов, Ду, мм	ж		G ½ − B										
Слив котловой воды, Ду, мм	3		G 1 1/2 − B										
Отвод конденсата, Ду, мм	И		G1-B										
Тягонапоромер, Ду, мм	K					G	½ − B						
Длина, мм	L	2389	2389	2511	2511	2731	2731	3137	3137	3345	3345		
Ширина, мм	В	1040	1040	1210	1210	1330	1330	1490	1490	1640	1640		
Высота, мм	Н	1313	1313	1483	1483	1603	1603	1751	1751	1901	1901		
Длина опорной рамы, мм	L1	1916	1916	2038	2038	2258	2258	2550	2550	2758	2758		
Ширина опорной рамы, мм	B1	800	800	1000	1000	1000	1000	1080	1080	1179	1179		
Ширина дверцы, мм	L2	253	253	253	253	253	253	375	375	375	375		
Расстояние, мм	L3	587	587	492	492	592	592	590	590	640	640		
Расстояние, мм	L4	500	500	500	500	550	550	700	700	700	700		
Расстояние, мм	L5	400	400	500	500	550	550	700	700	700	700		
Расстояние, мм	L6	631	631	748	748	768	768	762	762	920	920		
Расстояние, мм	B2	577	577	622	622	652	652	598	598	598	598		
Расстояние, мм	H1	885	885	1030	1030	1150	1150	1290	1290	1435	1435		
Расстояние, мм	H2	655	655	740	740	800	800	870	870	945	945		
Расстояние, мм	НЗ	465	465	470	470	470	470	470	470	545	545		
Расстояние, мм	H4	266	266	266	266	266	266	258	258	258	258		
Расстояние, мм	H5	81	81	81	81	81	81	71	71	71	71		

Специальное исполнение двухкотловой жаротрубной установки TEPMOTEXHИК TT50

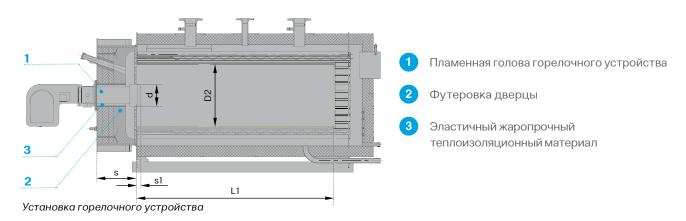
Двухкотловая установка состоит из двух котлов ТЕРМОТЕХНИК тип ТТ50. Верхний котел надежно устанавливается на ложементы нижнего котла. Дренажный патрубок и патрубки прямой и обратной воды выведены в область заднего фронта. Установка предохранительных клапанов предполагается на подводимый трубопровод. Транспортируются котлы отдельно друг от друга, на объекте собираются в единый блок.

Котлы, входящие в установку, предназначены для производства теплофикационной горячей воды с максимальной температурой 115 °С при максимально допустимом рабочем давлении 0,6 МПа. Диапазон общей тепловой мощности двухкотловой установки от 400 до 2000 кВт.

Двухкотловая установка используется для работы только в закрытых системах теплоснабжения и позволяет существенно сэкономить пространство котельной с одновременным увеличением мощности.

Общий вид двухкотловой установки

Технические характеристики двухкотловой установки


Наименование параметра	Значение
Максимальная температура на выходе из котла, °C	115
Минимальная температура на входе в котел, °C	60
Максимальное рабочее избыточное давление, МПа	0,6
Минимальный расход воды, м³/ч	Не регламентируется
Минимальная мощность первой ступени горелки, %	50
Назначенный срок службы, лет, не менее	25
Назначенный ресурс, ч, не менее	200000

Типоразмер котла	2×2	250	2×400		2×560		2×660		2×870		2×1000		
Номинальная теплопроизводительность установки, кВт	420	500	620	800	840	1120	1122	1320	1322	1740	1742	2000	
Номинальный расход воды в зависимости от Δt, м³/ч		см. график											
Гидравлическое сопротивление водяного тракта при расходе теплоносителя в зависимости от Δt, Па		см. график											
Эксплуатационный КПД, %	не менее 94												
КПД на максимальной нагрузке, %	95,2	94,5	93,4	91,7	94,3	92,9	92,9	91,8	94,6	93,3	93,3	92,4	
Температура уходящих газов, °С	127	142	165	199	144	174	175	196	139	166	166	184	
Расход уходящих газов, кг/с	0,09	0,11	0,13	0,17	0,18	0,24	0,24	0,29	0,28	0,37	0,37	0,43	
Аэродинамическое сопротивление газового тракта для максимальной мощности, Па	142	205	328	576	195	361	363	520	275	494	495	671	
Объем топки, м ³	0,35	0,35	0,35	0,35	0,52	0,52	0,52	0,52	0,80	0,80	0,80	0,80	
Водяной объем котла, м ³	0,35	0,35	0,35	0,35	0,74	0,74	0,74	0,74	0,96	0,96	0,96	0,96	
Масса сухого котла (допуск на массу 4,5 %), кг	1108	1108	1133	1133	1525	1525	1571	1571	1954	1954	2021	2021	

Данные приведены для одного котла.

Размеры топки котла ТТ50

Типоразмер котла	250	400	560	660	870	1000	1360	1530	1740	2000		
Диапазон мощности	250-210	400-310	560-420	660-561	870-661	1000-871	1360-1100	1530-1361	1740-1531	2000-1741		
Диаметр установочного отверстия (внешний), d, мм	200	200	220	220	300	300	300	300	300	300		
Толщина крышки с учетом переходной плиты, s, мм	275	275	275	275	275	275	397	397	397	397		
Установочный размер горелочного устройства, s1, мм		20-60										
Диаметр топочной камеры, D2, мм	510	510	600	600	700	700	850	850	960	960		
Длина жаровой трубы (топочной камеры), L1, мм	1738	1738	1858	1858	2078	2078	2368	2368	2576	2576		

Подбор и установка горелки

Горелочные устройства должны обеспечивать надежное воспламенение и устойчивое горение топлива без отрыва и проскока пламени в заданном диапазоне режимов работы, не допускать выпадения капель топлива на поверхность топки. Аэродинамические характеристики горелок и их размещение должны обеспечивать равномерное заполнение топки факелом без наброса его на стены и исключать образование застойных и плохо вентилируемых зон в объеме топки.

Заказчик может самостоятельно выполнить подбор горелочного устройства при соблюдении настоящей инструкции и рекомендаций производителя горелочных устройств. Горелочные устройства, используемые с котлами ТЕРМОТЕХНИК тип ТТ50, должны иметь принудительную подачу воздуха с регулируемым коэффициентом избытка воздуха. Пуск горелок, продувка камеры сгорания, работа, выключение должны производиться автоматически. Котлы эксплуатируются с избыточным давлением в топочной камере. При подборе горелок необходимо учитывать:

- длину и диаметр топки;
- аэродинамическое сопротивление котла.

На котлах разрешается применять автоматические многоступенчатые и модулируемые горелочные устройства (газовые, жидкотопливные или комбинированные). Горелочные устройства должны иметь сертификат соответствия требованиям промышленной безопасности и обеспечивать экономичную эксплуатацию котлов.

Горелочные устройства должны иметь паспорт организации-изготовителя, в котором должны быть указаны основные сведения (наименование и адрес изготовителя, заводской номер, дата изготовления, конструктивные решения, основные размеры, параметры рабочих сред, тип, мощность, регулировочный диапазон, основные технические характеристики и др.). Форма паспорта устанавливается изготовителем.

Все горелочные устройства должны в установленном порядке пройти соответствующие испытания (приемо-сдаточные, сертификационные, аттестационные, типовые).

Подвод топлива к горелочным устройствам, требования к запорной регулирующей и отсечной (предохранительной) арматуре, перечень необходимых защит и блокировок, а также требования к приготовлению и подаче топлива регламентируются для каждого вида топлива по нормативно-технической документации.

Монтаж горелочного устройства

Монтаж горелочного устройства должен производиться персоналом специализированной организации, имеющей разрешение на выполнение данного вида работ, в соответствии с требованиями производителя горелочного устройства. Размеры для установки горелочного устройства указаны в таблице. Персонал, выполняющий установку и в последующем наладку горелочного устройства, должен быть обучен и обеспечен необходимыми средствами индивидуальной защиты.

Перед монтажом горелочного устройства необходимо снять транспортную упаковку и убедиться, что горелочное устройство соответствует проектным требованиям, разработанным для данного котла. До установки пламенной головы горелочного устройства необходимо проверить наличие термоизолирующей прокладки между котлом и установочной плитой горелочного устройства. После установки пламенной головы горелочного устройства в передней дверце котла необходимо уплотнить кольцевой зазор между Пламенной головой горелочного устройства (1) и жесткой теплоизоляцией фронтальной двери — Футеровкой дверцы (2) — Эластичным теплоизоляционным жаропрочным материалом (3) (входит в комплект поставки котла). Размеры, которые необходимы для установки горелочного устройства, указаны на рисунке и в таблице.

Качество котловой воды

Эксплуатация котлов на неподготовленной воде запрещается. Особое внимание нужно уделять качеству котловой воды, которое в большинстве

случаев является определяющим фактором, который влияет на срок службы котла и всего котельного оборудования.

Водный режим должен обеспечивать работу котла без повреждения его элементов вследствие отложений накипи и шлама или в результате коррозии металла.

Состав воды на входе должен соответствовать указанным величинам показателей, приведенных в таблице. Меры по достижению нормативных показателей воды изложены в РД 24.031.120—91.

Способ водоподготовки должен выбираться специализированной организацией. В помещении котельной должен постоянно находиться журнал по водоподготовке, в который необходимо регулярно заносить всю информацию по водно-химическому режиму котла. В качестве теплоносителя возможно использование незамерзающих жидкостей по согласованию с заводом-изготовителем.

	Единицы измерения	ФПН (ПБ-574, РД 24.031.120—91) Система теплоснабжения									
Наименование показателя			Открытая			Закрытая					
		Температура сетевой воды, °С									
		115	150	200	115	150	200				
Общие требования				-	-						
Электрическая проводимость контурной воды	µS/см			-	-						
Прозрачность по шрифту, не менее	СМ	40	40	40	30	30	30				
Карбонатная жесткость											
при значении pH не более 8,5	мкг-экв/кг	Для котлов на жидком и газообразном топливе									
при значении рттне облес 0,0		700	600	300	700	600	300				
при значении рН более 8,5		н	е допускает	ся	по расчету ¹						
Содержание растворенного кислорода	мкг/кг	50	30	20	50	30	20				
Содержание соединений железа (в пересчете на Fe)	мкг/кг		250	200	500	400	300				
Значение рН при температуре 25 °C	-		от 7,0 до 8,5		(от 7,0 до 11,0 ²	2				
Общая жесткость (щелочноземельные вещества)	ммоль/л										
Содержание меди	мкг/кг			-	-						
Свободная углекислота	мг/кг			-	-						
Содержание нефтепродуктов	мг/кг				I						

¹ — согласно РД 24.031.120—91, черт. 1

Комплектация котлов

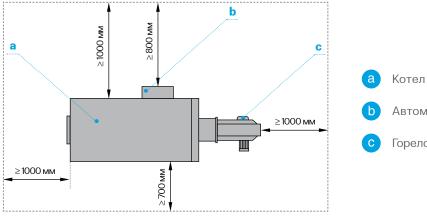
Предлагается несколько вариантов поставки котла в зависимости от оснащения оборудованием: полная комплектация, частичная и без комплектации. В полный комплект поставки входит котлоагрегат с установленным оборудованием, горелочным устройством, набором деталей и узлов согласно информации, указанной в опросном листе. Благодаря заводскому монтажу гарантируется оптимальная и надежная работа всех узлов котла. В комплекте с котлом поставляется уплотнительная вата для уплотнения кольцевого зазора между пламенной головой горелочного устройства и жесткой теплоизоляцией фронтальной двери.

По желанию заказчика котел может поставляться с частичной комплектацией оборудования (котел, оснащенный горелочным устройством и сбросными клапанами, а также эксплуатационная документация) или без комплектации (котел с эксплуатационной документацией).

В последнем случае заказчик самостоятельно производит комплектацию котлов горелочными устройствами, приборами безопасности, а также автоматикой. При заказе котла необходимо выбрать вид комплектации и при необходимости нужно согласовать объем поставки.

²— для теплосетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхнее значение pH сетевой воды не должно превышать 9,5

Принадлежности котлов


По желанию заказчика компания ЭНТРОРОС может дополнительно поставить по запросу следующие принадлежности для котлов:

	Плита под горелку									
	Фланец под горелку									
	Коллектор группы безопасности для подключения датчиков и контрольно-измерительных приборов									
	Ограничители минимального и максимального давления									
	Предохранительные клапаны									
	Датчики температуры									
	Клапан трехходовой									
	Котловой насос									
Другие при	Другие принадлежности для монтажа и обслуживания котлов									

Размещение котлов

Объемно-планировочные и конструктивные решения по размещению котлов должны соответствовать действующим территориальным нормам и правилам.

- Автоматика котла
- Горелочное устройство

Транспортирование

Котлы упакованы в термоусадочную пленку. Все патрубки и отверстия заглушены. Могут транспортироваться любым видом транспорта.

Типоразмер котла		250	400	560	660	870	1000	1360	1530	1740	2000
Диапазон мощностей, к	Вт	210-250	310-400	420-560	561-660	661–870	871–1000	1100-1360	1361-1530	1531-1740	1741–2000
Длина, мм	L	2526	2526	2648	2648	2869	2869	3283	3283	3491	3491
Ширина, мм	В	1040	1040	1210	1210	1330	1330	1490	1490	1640	1640
Высота, мм	Н	1313	1313	1483	1483	1603	1603	1751	1751	1901	1901
Диаметр отверстия для строповки, мм	d	40	40	40	40	40	40	40	40	40	40
Расстояние между фронтами, мм	L1	1820	1820	1942	1942	2162	2162	2450	2450	2658	2658
Расстояние между отверстиями обухов, мм	L2	-	-	-	-	-	-	2362	2362	2570	2570
Центр масс, мм	L3	764	764	822	822	936	936	1015	1015	1114	1114
Масса, кг	m	1108	1133	1525	1571	1954	2021	2792	2895	3511	3656

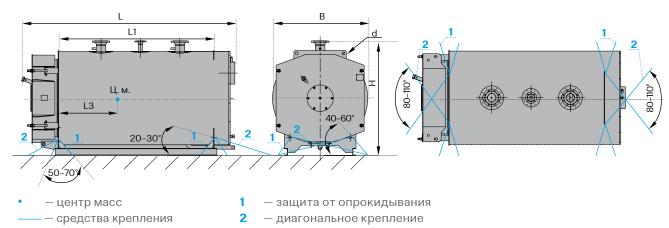


Схема транспортировки котлов теплопроизводительностью 210-1000 кВт

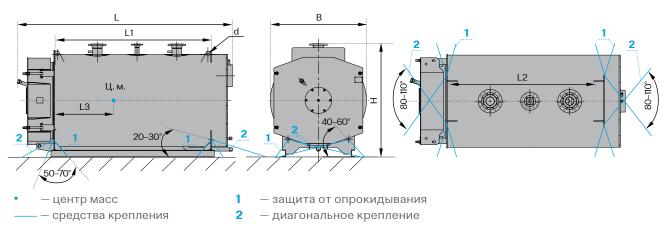


Схема транспортировки котлов теплопроизводительностью 1100-2000 кВт

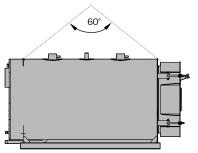


Схема строповки котлов теплопроизводительностью 210–1000 кВт

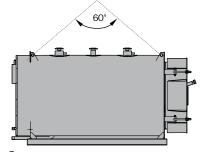


Схема строповки котлов теплопроизводительностью 1100–2000 кВт

