ТЕРМОТЕХНИК ТТ100-01

1000-20000 кВт; 140 °С; 8,5 бар

Назначение котлов TT100-01

Котлы серии ТЕРМОТЕХНИК тип ТТ100-01 это трехходовые водогрейные газотрубные котлы мощностью от 1,0 до 20,0 МВт.

Котлы TT100-01 изготавливаются в соответствии с требованиями Технических регламентов Таможенного союза:

- «О безопасности машин и оборудования»,
- «О безопасности оборудования, работающего под избыточным давлением».

Котлы ТЕРМОТЕХНИК тип ТТ100-01 предназначены для теплоснабжения зданий и сооружений, обеспечения технологических процессов различного назначения.

Область применения: стационарные, блочномодульные и транспортабельные котельные, используемые в закрытых и открытых системах теплоснабжения.

Котлы могут перевозиться железнодорожным, автомобильным и водным транспортом в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта. Поставка котлов осуществляется в собранном виде одним транспортабельным блоком.

Гарантийный срок при соблюдении условий транспортирования, хранения, монтажа и эксплуатации:

- при работе на газовом и дизельном топливе 36 месяцев со дня ввода в эксплуатацию, но не более 42 месяцев со дня отгрузки с завода-изготовителя;
- при работе на тяжелом топливе (мазут, сырая нефть и т. д.) — 12 месяцев со дня ввода в эксплуатацию, но не более 18 месяцев со дня отгрузки с завода-изготовителя.

Оптимальный выбор для надежной эксплуатации:

- широкий диапазон производительности. Тепловая мощность котлов от 1000 до 20000 кВт;
- широкий выбор возможных комплектаций. В полной и частичной комплектациях котлы оснащаются системами автоматического управления и контроля ЭНТРОМАТИК серии 100MS или 110MS, всеми необходимыми датчиками и приборами безопасности, что делает эксплуатацию котла надежной и безопасной;
- в котлах производительностью от 6,5 МВТ применяются промежуточные трубные доски,

Общий вид котла ТТ100-01

благодаря которым интенсифицировано движение теплоносителя внутри котла;

- универсальность конструкции фронтальной двери. Уникальная конструкция петлевых узлов позволяет выбрать направление открытия (влево/вправо), что дает возможность эргономично размещать оборудование в помещении котельной;
- крепление горелки с помощью горелочной плиты или фланца-удлинителя. Данное решение позволяет установить горелочное устройство любого производителя. Длинная и короткая горелочные головы больше не проблема;
- полное открытие фронтальной двери вместе с горелочным устройством. Регламентное обслуживание и осуществление чистки теплообменных поверхностей не требуют демонтажа горелки. Передняя трубная доска, внутренняя поверхность жаровой трубы и дымогарные трубы второго и третьего ходов полностью доступны для осмотра и чистки;
- наличие смотровых люков. Позволяет быстро производить осмотр водяной полости котла на предмет появления отложений и следить за общим состоянием теплообменных поверхностей;
- прочное основание. Конструкция основания выполнена из стальных швеллеров. Весовая нагрузка от котла, заполненного теплоносителем, равномерно распределена по опорной площади. Котел не требует дополнительной фиксации к закладным основания при установке в стационарных котельных залах;
- совместимость с различными типами горелочных устройств. Корректная работа с автоматическими многоступенчатыми и модулируемыми горелками;
- незамерзающий теплоноситель. Возможно применение в качестве теплоносителя растворов этиленгликоля, что сводит к минимуму вероятность замерзания котлового контура.

Высокая эффективность при минимальных эксплуатационных затратах:

- максимальные значения эксплуатационного КПД среди котлов данного класса.
 Высокая эффективность достигается следующими способами:
 - 1. Интенсивный конвективный теплообмен. Трехходовая конструкция и оптимально подобранные теплообменные поверхности, включая полностью омываемую теплоносителем первую поворотную камеру, позволяют максимально использовать энергию дымовых газов, передавая ее теплоносителю, циркулирующему в объеме котла.
 - 2. Интенсивный лучистый теплообмен. Гладкостенная цилиндрическая жаровая труба полностью омывается теплоносителем. Позволяет максимально воспринимать излучение факела и передавать воспринятое тепло теплоносителю.
 - 3. Точный подбор соотношения сечений дымогарных труб второго и третьего ходов обеспечивает минимальные значения аэродинамического сопротивления при сохранении высокой площади теплообменных поверхностей.
 - 4. Качественная теплоизоляция. Для тепловой изоляции корпуса котла применены минеральные маты с низкими значениями коэффициентов теплопроводности, что сводит к минимуму потери энергии в окружающую среду через обшивку котла;
- котлоагрегат. Полная комплектация котла, включая горелочное устройство, модуль автоматики, электрические шкафы,

все необходимые датчики и приборы безопасности, трубопроводную обвязку, насосный модуль. Данное решение позволяет получить полностью готовый к эксплуатации котел без дополнительных затрат на обвязку и монтаж, что является экономически целесообразным и гарантирует правильный подбор составляющих компонентов.

Технологичность и качество — в деталях:

- высококачественный листовой и трубный прокат. Для изготовления котлов ТЕРМОТЕХНИК применяются листы и трубы, произведенные ведущими российскими металлургическими комбинатами. Все материалы проходят входной контроль на предмет соответствия физических свойств и химического состава заявленным маркам сталей, выбранным исходя из расчетов прочности для каждого типоразмера котла;
- многоуровневый контроль качества на всех этапах производства. Аттестованная лаборатория производит неразрушающий и визуальноизмерительный контроль в соответствии с требованиями карты контроля каждого изделия;
- обязательные гидравлические испытания.
 Каждое изделие подвергается гидравлическим испытаниям на завершающей стадии изготовления;
- максимальная автоматизация процесса изготовления. При изготовлении применяется автоматическая сварка. Рабочие центры оборудованы всем необходимым инвентарем и оснасткой, что положительно влияет на правильную собираемость изделий и качественную подготовку кромок свариваемых деталей.

Работа котлов ТТ100-01

Котел ТЕРМОТЕХНИК тип ТТ100-01 является газотрубным трехходовым котлом. Принципиальная схема работы котла ТТ100-01 представлена на рисунке.

Сгорание топлива происходит в камере сгорания, образованной Жаровой трубой 1, Задним фронтом 25 и Торосферическим днищем поворотной камеры 5. Дымовые газы, образовавшиеся в камере сгорания, разворачиваются в Первой поворотной камере 4, образованной Задним фронтом 25 и Торосферическим днищем поворотной камеры 5, и попадают в Дымогарные трубы второго хода 2, по которым перемещаются в область Переднего фронта 24, при этом отдавая часть своей энергии

теплоносителю, циркулирующему в объеме котла, ограниченном Жаровой трубой 1, Передним фронтом 24, Задним фронтом 25, Торосферическим днищем поворотной камеры 5, Дымогарными трубами второго хода 2, Дымогарными трубами третьего хода 3, Обечайкой наружного корпуса котла 27 и Торосферическим днищем корпуса котла 26. После выхода из Дымогарных труб второго хода 2 отдавшие часть своей энергии газы разворачиваются во Второй поворотной камере 6, образованной Футеровкой фронтальной дверцы 7 и лицевой стороной Переднего фронта 24, и через Дымогарные трубы третьего хода 3

двигаются в обратном направлении в сторону Торосферического днища корпуса котла (26), также отдавая при этом часть своей тепловой энергии теплоносителю, циркулирующему в объеме котла. После выхода из Дымогарных труб третьего хода (3) газы поступают в Дымовую коробку (28), откуда через Патрубок отвода уходящих газов (18) покидают пределы котла.

При сгорании топлива в камере сгорания эффективно работает излучение факела, передающее тепло стенкам Жаровой трубы (1) и далее теплоносителю, циркулирующему в объеме котла. При движении газа по Трубам второго хода (2) и Трубам третьего хода (3) передача тепла теплоносителю осуществляется конвекцией.

Визуальный осмотр факела, развернутого в Жаровой трубе (1), осуществляется через Смотровой глазок (17), расположенный на передней стенке Фронтальной дверцы котла (8).

Фронтальная дверца котла (8) может полностью открываться с установленным на ней Горелочным устройством (9) в любом направлении. Изначальное направление открытия необходимо указать при заказе котла. Впоследствии направление открытия может быть изменено самостоятельно. При открытой фронтальной дверце обеспечивается доступ для осмотра и чистки внутренних теплообменных поверхностей котла по газовой стороне, таких как Дымогарные трубы второго хода (2), Дымогарные трубы третьего хода (3), Жаровая труба (1), Передний фронт (24).

Для очистки Дымогарных труб второго хода (2) и Дымогарных труб третьего хода (3) должны использоваться специальные комплекты для чистки. При очистке Дымогарных труб второго хода (2) отложения продуктов сгорания выталкиваются в Первую поворотную камеру (4), откуда удаляются через Жаровую трубу (1), внутренняя поверхность которой становится доступна для осмотра и чистки при открывании Фронтальной дверцы котла (8) При чистке Дымогарных труб третьего хода (3) отложения продуктов сгорания выталкиваются в Дымовую коробку (28), откуда удаляются через Смотровой люк дымовой коробки (11).

Для котлов до 6 МВт в верхней части котла расположен Смотровой люк водяной полости (10). Данный люк предназначен для осмотра внутренних теплообменных поверхностей котла по водяной стороне. Для котлов от 6,5 МВт два люка сбоку котла в нижней части. Патрубки входа теплоносителя (12), выхода теплоносителя (13) и Патрубки аварийной линии (14) располагаются сверху котла. На патрубках входа и выхода теплоносителя имеются специальные штуцеры для установки датчиков температуры.

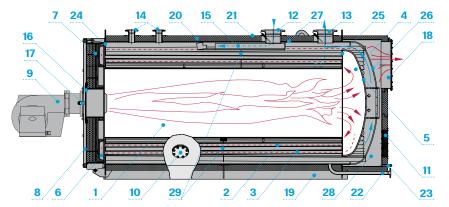
На Обечайке наружного кожуха котла (27), с водяной стороны, в области расположения Патрубка входа теплоносителя (12), располагается Водонаправляющий элемент (15). Данный элемент позволяет эффективно организовать движение теплоносителя в объеме котла.

Для монтажа Горелочного устройства (9) на Фронтальной дверце котла (8) используется переходной элемент — Горелочная плита (16) или, при необходимости, фланец-удлинитель. Горелочная плита (фланец-удлинитель) заказывается отдельно и разрабатывается непосредственно под конкретное Горелочное устройство. По умолчанию котлы оснащаются глухой горелочной плитой.

Для равномерного распределения весовой нагрузки котла, заполненного теплоносителем, в конструкции применяются Стальные несущие опоры (19). Котел на данных опорах может быть размещен на ровном, прочном полу без устройства дополнительного фундамента. Фиксация опор к закладным пола не требуется, за исключением случаев установки котла в модульных котельных, подлежащих транспортировке в собранном виде.

Для Теплоизоляции котла (20) применяются ламельные минеральные маты с низким значением коэффициента теплопроводности, что позволяет значительно уменьшить коэффициент q₅ (потери тепла в окружающую среду через обшивку котла) ниже нормативного значения (0,5 % Q). Снаружи котел облицован Оцинкованным покрытием (21), что позволяет сохранить эффектный внешний вид на протяжении всего срока службы.

Дренажный патрубок котла (22) расположен в нижней его части и служит для полного или частичного удаления теплоносителя из внутренней полости. Дренажный патрубок дымовой коробки (23) расположен в нижней ее части и служит для удаления конденсата, образовавшегося в котле при пусках из холодного состояния.


В верхней части котла на Обечайке наружного кожуха (27) имеются специальные грузоподъемные проушины, являющиеся местами строповки при перемещении котлов, их погрузке и выгрузке.

Трехходовая схема газового тракта котла с низкой теплонапряженностью камеры сгорания обеспечивает удобную настройку режимов горения котла и минимизирует содержание NOx в уходящих дымовых газах.

Низкое аэродинамическое сопротивление котла и соответствующие габариты жаровой трубы позволяют наиболее оптимально подобрать горелочное устройство.

Схема котла ТТ100-01

Принципиальная схема работы котла ТТ100-01

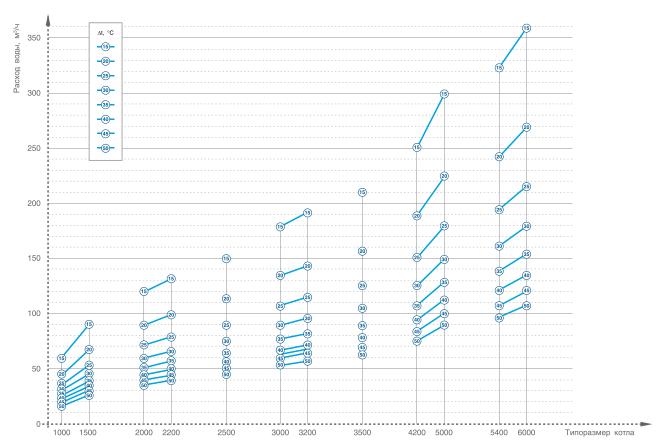
- Жаровая труба
- 2 Дымогарные трубы второго хода
- 3 Дымогарные трубы третьего хода
- Первая поворотная камера
- 5 Торосферическое днище поворотной камеры
- 6 Вторая поворотная камера
- Футеровка фронтальной дверцы
- 8 Фронтальная дверца котла

- 9 Горелочное устройство
- 10 Смотровой люк водяной полости котла (от 6,5 МВт)
- 11 Смотровой люк дымовой коробки
- 12 Патрубок входа теплоносителя
- 13 Патрубок выхода теплоносителя
- 14 Патрубки аварийной линии
- 15 Водонаправляющий элемент
- 16 Горелочная плита

- 17 Смотровой глазок
- Патрубок отвода уходящих газов
- 19 Стальные несущие опоры
- 20 Теплоизоляция котла
- **21** Облицовочное оцинкованное покрытие
- 22 Дренажный патрубок котла
- 23 Дренажный патрубок дымовой коробки
- 24 Передний фронт (трубная доска)
- 25 Задний фронт (трубная доска)
- 26 Торосферическое днище корпуса котла
- Обечайка наружного кожуха котла
- 28 Дымовая коробка
- 29 Промежуточные трубные доски (от 6,5 МВт)

Технические характеристики котлов ТТ100-01

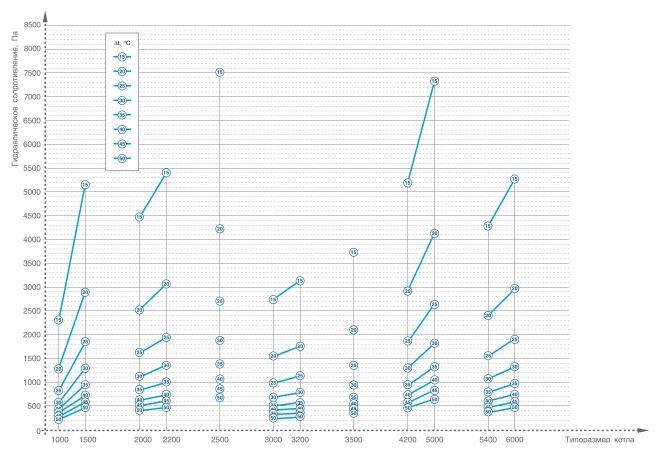
Наименование параметра	Значение
Максимальная температура на выходе из котла, °С	140
Минимальная температура на входе в котел, °С	60
Максимальное рабочее избыточное давление воды, МПа	0,85
Минимальный расход воды, м³/ч	Не регламентируется
Минимальная мощность первой ступени горелки, %	10
Назначенный срок службы, лет, не менее	25
Назначенный ресурс, ч, не менее	200000

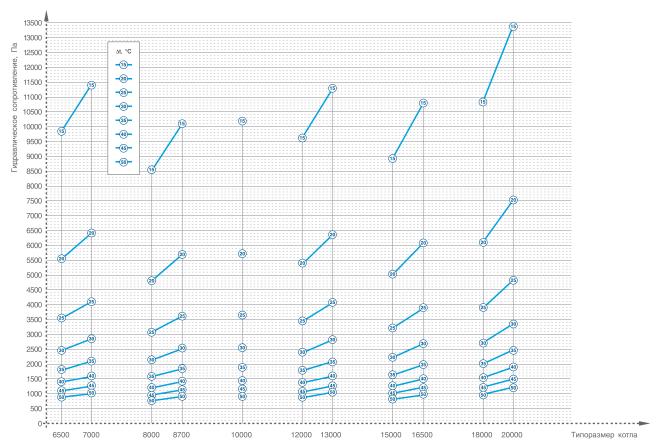

Номинальная теплопроизводительность, кВт	1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	6000
Номинальный расход воды в зависимости от Δt , $m^3/4$						СМ.	график					
Гидравлическое сопротивление водяного тракта при расходе теплоносителя в зависимости от Δt , Πa						см.	график					
Эксплуатационный КПД, %	не менее 94											
КПД на максимальной нагрузке, %	92,2	90,2	91,1	90,6	90,5	91,0	90,7	92,0	93,7	93,2	92,9	92,5
КПД при использовании экономайзера, %	95,2	93,9	94,8	94,5	94,3	94,4	94,2	94,7	95,7	95,3	95,1	94,8
Температура уходящих газов, °С	187	229	211	221	224	212	219	192	156	167	174	182
Температура уходящих газов при наличии экономайзера, °C	127	153	135	141	145	143	147	136	117	124	129	134
Расход уходящих газов, кг/с	0,44	0,67	0,88	0,97	1,11	1,32	1,42	1,53	1,80	2,15	2,33	2,60
Аэродинамическое сопротивление газового тракта для максимальной мощности, Па	231	607	748	939	972	898	1046	1245	1171	1745	1061	1355
Объем топки, м ³	0,86	0,86	1,36	1,36	1,48	2,21	2,21	2,46	3,29	3,29	4,19	4,19
Водяной объем котла, м ³	1,86	1,86	2,66	2,66	2,76	3,89	3,89	4,39	5,14	5,14	6,42	6,42
Масса сухого котла (допуск на массу 4,5 %), кг	3429	3491	4910	4990	5303	7322	7455	7971	10059	10203	12038	12169

Номинальная теплопроизводительность, кВт	6500	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Номинальный расход воды в зависимости от Δt, м³/ч					c	м. графи	к				
Гидравлическое сопротивление водяного тракта при расходе теплоносителя в зависимости от Δt , Πa					С	м. графи	K				
Эксплуатационный КПД, %	не менее 94										
КПД на максимальной нагрузке, %	92,2	91,9	92,5	92,2	92,7	91,5	91,1	92,6	92,2	93,5	93,2
КПД при использовании экономайзера, %	95,0	94,8	94,9	94,6	94,8	94,0	93,8	94,9	94,6	95,2	95,0
Температура уходящих газов, °С	188	194	181	188	177	203	211	180	188	161	168
Температура уходящих газов при наличии экономайзера, °C	131	135	133	138	134	150	156	133	139	126	131
Расход уходящих газов, кг/с	2,83	3,06	3,47	3,79	4,33	5,26	5,72	6,50	7,18	7,72	8,61
Аэродинамическое сопротивление газового тракта для максимальной мощности, Па	1061	1262	1217	1478	1394	1416	1710	1744	2178	1352	1719
Объем топки, м ³	5,16	5,16	6,56	6,56	8,51	10,78	10,78	13,71	13,71	16,80	16,80
Водяной объем котла, м ³	7,40	7,40	8,91	8,91	12,12	16,00	16,00	20,00	20,00	24,74	24,74
Масса сухого котла (допуск на массу 4,5 %), кг	14556	14705	17946	18244	21076	24711	25138	30694	31025	41067	41683

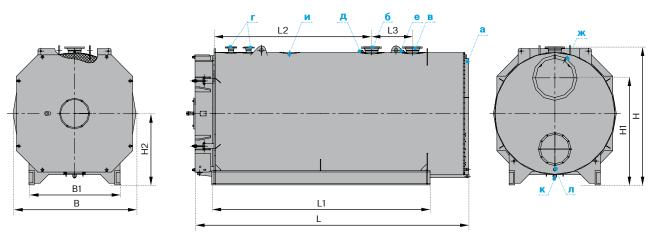

Значения КПД указаны для природного газа по ГОСТ 5542—2022.

Значения указаны для температурного графика 70–130 °C.




Зависимость расхода воды котлов ТТ100-01 от Δt

Зависимость расхода воды котлов TT100-01 от Δt . Продолжение



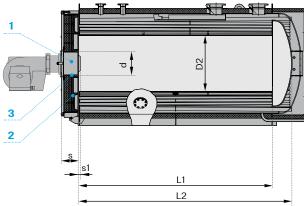
Зависимость гидравлического сопротивления котлов TT100-01 от Δt

Зависимость гидравлического сопротивления котлов TT100-01 от Δt . Продолжение

Габаритные и присоединительные размеры котлов ТТ100-01

Габаритные и присоединительные размеры

Номинальная теплопроизводит	ельность, кВт	4000	4500	2222	2222	0500	2222	2222	0500	4000	5000	5400	2222
Наименование патрубка	Обозначение	1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	6000
Отвод уходящих газов, Ду, мм	а	350	350	500	500	500	500	500	500	650	650	650	650
Вход теплоносителя, Ду, мм	б	125	125	150	150	150	200	200	200	200	200	250	250
Выход теплоносителя, Ду, мм	В	125	125	150	150	150	200	200	200	200	200	250	250
Предохранительный клапан, Ду, мм	г	2×50	2×50	2×65	2×65	2×65	2×65	2×65	2×65	2×80	2×80	2×80	2×80
Датчик температуры, вход теплоносителя	Д						G ½	— В					
Датчик температуры, выход теплоносителя	е						G ½	— В					
Датчик температуры, отвод дымовых газов	ж						G ½	— В					
Люк смотровой водяной полости, мм	и						225	×160					
Слив котловой воды	К	G 1½ — B									5	0	
Отвод конденсата дымовой коробки	Л						G 1	— В					


Номинальная теплопроизводит	гельность, кВт	0500	7000	2222	0700	10000	40000	40000	45000	40500	40000	2222
Наименование патрубка	Обозначение	6500	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Отвод уходящих газов, Ду, мм	а	800	800	800	800	900	1000	1000	1000	1000	1000	1000
Вход теплоносителя, Ду, мм	6	250	250	300	300	300	350	350	400	400	400	400
Выход теплоносителя, Ду, мм	В	250	250	300	300	300	350	350	400	400	400	400
Предохранительный клапан, Ду, мм	г	2×100	2×100	2×100	2×100	2×125	2×125	2×125	2×125	2×125	2×125	2×125
Датчик температуры, вход теплоносителя	Д						G ½ − B					
Датчик температуры, выход теплоносителя	е						G ½ − B					
Датчик температуры, отвод дымовых газов	ж						G ½ − B					
Люк смотровой водяной полости	И					Д	у 150 2 ц	IT.				
Слив котловой воды	К	50										
Отвод конденсата дымовой коробки	Л						G 1 – B					

Номиналь теплопроизводите		1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	6000
Габаритные размеры	Обозначение	1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	8000
Длина котла, мм	L	3038	3038	3340	3340	3590	3978	3978	4378	4674	4674	4963	4963
Ширина котла, мм	В	1540	1540	1740	1740	1740	1940	1940	1940	2100	2100	2200	2200
Высота котла, мм	Н	1768	1768	1968	1968	1968	2168	2168	2168	2328	2328	2438	2438
Длина опорной рамы, мм	L1	2294	2294	2522	2522	2772	3047	3047	3447	3730	3730	3999	3999
Ширина опорной рамы, мм	B1	910	910	1152	1152	1152	1152	1152	1152	1556	1556	1556	1556
Высота оси патрубка отвода дымовых газов, мм	H1	1360	1360	1520	1520	1520	1720	1720	1720	1805	1805	1890	1890
Высота оси амбразуры двери, мм	H2	910	910	1010	1010	1010	1110	1110	1110	1205	1205	1262	1262
Расстояние от фронта котла до патрубка входа теплоносителя, мм	L2	1365	1365	1683	1683	1878	2078	2078	2428	2676	2676	2674	2674
Расстояние между патрубками входа и выхода теплоносителя, мм	L3	400	400	550	550	550	600	600	600	700	700	800	800

Номиналі теплопроизводите		6500	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Габаритные размеры	Обозначение	6300	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Длина котла, мм	L	5352	5352	5648	5648	6290	6805	6805	7461	7461	7919	7919
Ширина котла, мм	В	2360	2360	2500	2500	2680	2860	2860	3060	3060	3390	3390
Высота котла, мм	Н	2574	2574	2710	2710	2898	3074	3074	3276	3276	3606	3606
Длина опорной рамы, мм	L1	4200	4200	4500	4500	5220	5470	5470	6135	6135	6530	6530
Ширина опорной рамы, мм	B1	1580	1580	1800	1800	1800	1820	1820	1940	1940	1940	1940
Высота оси патрубка отвода дымовых газов, мм	H1	1970	1970	2070	2070	2130	2364	2364	2514	2514	2679	2679
Высота оси амбразуры двери, мм	H2	1314	1314	1370	1370	1490	1564	1564	1664	1664	1829	1829
Расстояние от фронта котла до патрубка входа теплоносителя, мм	L2	2888	2888	3098	3098	3329	3354	3354	3724	3724	3722	3722
Расстояние между патрубками входа и выхода теплоносителя, мм	L3	900	900	1000	1000	1400	1600	1600	2000	2000	2000	2000

Размеры топки котла TT100-01

- 1 Пламенная голова горелки
- 2 Жесткая теплоизоляция фронтальной двери
- 3 Эластичный теплоизоляционный материал

Установка горелки

Номинальная теплопроизводительность, кВт	1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	6000
Диаметр установочного отверстия, d, мм	300	300	380	380	380	450	450	450	450	450	450	450
Толщина крышки с учетом переходной плиты, s, мм	250	250	300	300	300	350	350	350	350	350	350	350
Установочный размер горелки, s1, мм						20-	-60					
Диаметр жаровой трубы, D2, мм	650	650	780	780	780	900	900	900	1000	1000	1100	1100
Длина жаровой трубы, L1, мм	2225	2225	2435	2435	2685	2975	2975	3375	3650	3650	3926	3926
Длина топочной камеры, L2, мм	2459	2459	2708	2708	2958	3293	3293	3693	3990	3990	4273	4273

Номинальная теплопроизводительность, кВт	6500	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Диаметр установочного отверстия, d, мм	500	500	590	590	590	730	730	730	730	740	740
Толщина крышки с учетом переходной плиты, s, мм	350	350	350	350	350	350	350	350	350	350	350
Установочный размер горелки, s1, мм						20-60					
Диаметр жаровой трубы, D2, мм	1180	1180	1280	1280	1380	1500	1500	1600	1600	1700	1700
Длина жаровой трубы, L1, мм	4105	4105	4470	4470	5105	5405	5405	6105	6105	6500	6500
Длина топочной камеры, L2, мм	4505	4505	4890	4890	5540	5893	5893	6616	6616	7071	7071

Подбор и установка горелки

Горелочные устройства должны обеспечивать надежное воспламенение и устойчивое горение топлива без отрыва и проскока пламени в заданном диапазоне режимов работы, не допускать выпадения капель топлива на поверхность топки.

Аэродинамические характеристики горелок и их размещение должны обеспечивать равномерное заполнение топки факелом без наброса его на стены и исключать образование застойных и плохо вентилируемых зон в объеме топки. Заказчик может самостоятельно выполнить подбор горелки при соблюдении требований РЭ на котлел и рекомендаций производителя горелочных устройств.

Горелки, используемые с котлами ТЕРМОТЕХНИК тип ТТ100-01, должны иметь принудительную подачу воздуха с регулируемым коэффициентом избытка воздуха. Пуск горелок, продувка камеры сгорания, работа, выключение должны производиться автоматически. Котлы ТЕРМОТЕХНИК тип ТТ100-01 эксплуатируются с избыточным давлением в топочной камере. При подборе горелочных устройств необходимо учитывать:

- длину и диаметр топки;
- аэродинамическое сопротивление котла.

На котлах ТЕРМОТЕХНИК тип ТТ100-01 разрешается применять автоматические многоступенчатые и модулируемые горелки (газовые, жидкотопливные или комбинированные).

Горелочные устройства должны иметь сертификат соответствия требованиям промышленной безопасности и обеспечивать экономичную эксплуатацию котлов.

Горелочные устройства должны иметь паспорт организации-изготовителя, в котором указываются основные сведения (наименование и адрес изготовителя, заводской номер, дата изготовления, конструктивные решения, основные размеры,

параметры рабочих сред, тип, мощность, регулировочный диапазон, основные технические характеристики и др.). Форма паспорта устанавливается изготовителем. Все горелочные устройства должны в установленном порядке пройти соответствующие испытания (приемосдаточные, сертификационные, аттестационные, типовые).

Подвод топлива к горелкам, требования к запорной регулирующей и отсечной (предохранительной) арматуре, перечень необходимых защит и блокировок, а также требования к приготовлению и подаче топлива регламентируются для каждого вида топлива по нормативно-технической документации.

Монтаж горелки

Монтаж горелочного устройства должен производиться персоналом специализированной организации, имеющей разрешение на выполнение данного вида работ, в соответствии с требованиями производителя горелки. Размеры для установки горелки указаны в таблице.

Персонал, выполняющий установку и в последующем наладку горелочного устройства, должен быть обучен и обеспечен необходимыми средствами индивидуальной защиты. Перед монтажом горелки необходимо снять транспортную упаковку и убедиться, что горелка соответствует проектным требованиям, разработанным для данного котла. До установки пламенной головы горелки необходимо проверить наличие термоизолирующей прокладки между котлом и установочной плитой горелки. После установки пламенной головы горелки в передней дверце котла необходимо уплотнить кольцевой зазор между Пламенной головой горелки (1) и Жесткой теплоизоляцией фронтальной двери (2) Эластичным жаропрочным теплоизоляционным материалом (3) (входит в комплект поставки котла). Размеры, необходимые для установки горелки, указаны на рис. и в табл.

Качество котловой воды

Эксплуатация котлов без докотловой или внутрикотловой обработки воды запрещается. Особое внимание необходимо уделять качеству

котловой воды, которое в большинстве случаев является определяющим фактором, влияющим на срок службы котла и всего котельного оборудования.

Водный режим должен обеспечивать работу котла без повреждения его элементов вследствие отложений накипи и шлама или в результате коррозии металла.

Состав воды на входе должен соответствовать указанным величинам показателей, приведенных в таблице. Меры по достижению нормативных показателей воды изложены в РД 24.031.120—91.

Способ водоподготовки должен выбираться специализированной организацией. В помещении котельной должен постоянно находиться журнал по водоподготовке, в который необходимо регулярно заносить всю информацию по водно-химическому режиму котла. В качестве теплоносителя возможно использование незамерзающих жидкостей по согласованию с заводом-изготовителем.

			ФП	Н (ПБ-574, РД	Լ 24.031.120-	–91)								
			(Система теп	лоснабжени	Я								
Наименование показателя	Единицы измерения		Открытая			Закрытая								
			Теі	ипература с	етевой воды	, °C								
		115	150	200	115	150	200							
Общие требования				-	-									
Электрическая проводимость контурной воды	µS/см			-	-									
Прозрачность по шрифту, не менее	СМ	40	40	40	30	30	30							
Карбонатная жесткость														
при значении рН не более 8,5	мкг-экв/кг													
при значении рттне облес 0,0	WIKI - JKB/KI	700	600	300	700	600	300							
при значении рН более 8,5		н	е допускает	ся		по расчету ¹								
Содержание растворенного кислорода	мкг/кг	50	30	20	50	30	20							
Содержание соединений железа (в пересчете на Fe)	мкг/кг		250	200	500	400	300							
Значение рН при температуре 25 °C	-		от 7,0 до 8,5			от 7,0 до 11,0 ²	2							
Общая жесткость (щелочноземельные вещества)	ммоль/л													
Содержание меди	мкг/кг			-	-									
Свободная углекислота	мг/кг			-	-									
Содержание нефтепродуктов	мг/кг			-	1									

¹ — согласно РД 24.031.120—91, черт. 1

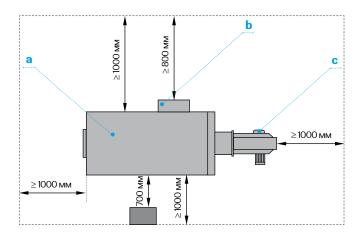
Комплектация котлов

Предлагается несколько вариантов поставки котла в зависимости от оснащения оборудованием: полная комплектация, частичная комплектация и без комплектации. В полный комплект поставки входит котлоагрегат с установленным оборудованием, горелочным устройством, набором деталей и узлов согласно информации, указанной в опросном листе. Благодаря заводскому монтажу гарантируется оптимальная и надежная работа всех узлов котла. В комплекте с котлом поставляются уплотнительная вата для уплотнения кольцевого зазора между пламенной головой горелочного устройста и жесткой теплоизоляцией фронтальной двери,

а также ответный фланец патрубка выхода дымовых газов (на котлах до 6 МВт включительно патрубок уходящих газов не имеет фланцевого соединения). По желанию заказчика котел может поставляться с частичной комплектацией оборудования (котел, оснащенный горелкой и сбросными клапанами, а также эксплуатационная документация) или без комплектации (котел с эксплуатационной документацией). В последнем случае заказчик самостоятельно производит комплектацию котлов горелками, приборами безопасности и автоматикой. При заказе необходимо выбрать вид комплектации и при необходимости согласовать объем поставки.

²— для теплосетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхнее значение pH сетевой воды не должно превышать 9,5

Принадлежности котлов


В зависимости от желания заказчика компания ЭНТРОРОС может поставить по дополнительному запросу следующие принадлежности для котлов:

	Плита под горелку
	Фланец под горелку
	Коллектор группы безопасности для подключения датчиков и контрольно-измерительных приборов
	Ограничители минимального и максимального давления
	Предохранительные клапаны
	Датчики температуры
	Клапан трехходовой
	Котловой насос
Другие прі	инадлежности для монтажа и обслуживания котлов

Размещение котлов

Объемно-планировочные и конструктивные решения по размещению котлов должны соответствовать действующим территориальным нормам и правилам.

- а Котел
- b Автоматика котла
- С Горелочное устройство

Транспортирование

Котлы упакованы в специальные чехлы. Все патрубки и отверстия заглушены. Могут транспортироваться любым видом транспорта.

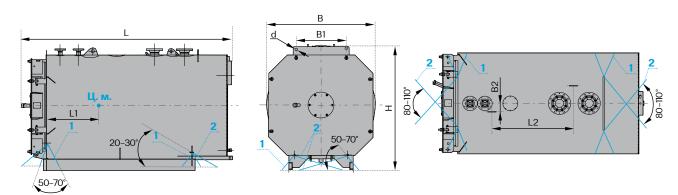
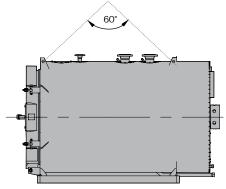



Схема транспортировки котла

Принципиальная схема строповки котла

Условные обозначения:

- — центр масс
- – средство крепления
- 1 защита от опрокидывания
- 2 диагональное крепление

Наименование					Ч	исленно	э значени	1e				
Номинальная теплопроизводительность, кВт	1000	1500	2000	2200	2500	3000	3200	3500	4200	5000	5400	6000
Длина, L, мм	3183	3183	3485	3485	3735	4134	4134	4532	4831	4831	5103	5103
Ширина, В, мм	1540	1540	1740	1740	1740	1940	1940	1940	2100	2100	2200	2200
Высота, Н, мм	1768	1768	1968	1968	1968	2168	2168	2168	2328	2328	2438	2438
Расстояние, В1, мм	-	_	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
Расстояние, В2, мм	299	299	299	299	299	317	317	317	375	375	375	375
Диаметр отверстия, d, мм	-	_	28	28	28	28	28	28	28	28	28	28
Центр масс, L1, мм	1121	1121	1217	1217	1344	1518	1518	1718	1835	1835	1948	1948
Расстояние, L2, мм	2107	2107	2328	2328	2578	2855	2855	3255	2300	2300	2325	2325
Macca, m, кг	3429	3491	4910	4990	5303	7322	7455	7971	10059	10203	12038	12169

Наименование	Численное значение										
Номинальная теплопроизводительность, кВт	6500	7000	8000	8700	10000	12000	13000	15000	16500	18000	20000
Длина, L, мм	5412	5412	5805	5805	6336	6962	6962	7608	7608	8064	8064
Ширина, В, мм	2360	2360	2500	2500	2680	2860	2860	3060	3060	3390	3390
Высота, Н, мм	2574	2574	2710	2710	2900	3074	3074	3276	3276	3606	3606
Расстояние, В1, мм	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
Расстояние, В2, мм	380	380	480	480	330	380	380	380	380	530	530
Диаметр отверстия, d, мм	28	28	28	28	28	28	28	28	28	28	28
Центр масс, L1, мм	2137	2137	2271	2271	2674	2833	2833	3210	3210	3400	3400
Расстояние, L2, мм	2645	2645	3400	3400	3800	3955	3955	4355	4355	4475	4475
Macca, m, кг	14556	14705	17946	18244	21076	24711	25138	30694	31025	41067	41683